An Application of Microwave Treatment to the Dehydration of Manganese Dioxide for Lithium Nonaqueous Cells

NOTES

Taketsugu Hirai,* Isao Tari, and Tsutomu Ohzuku

Department of Synthetic Chemistry, Faculty of Engineering, Okayama University, Tsushima, Okayama 700

(Received October 11, 1979)

Synopsis. A new dehydration technique of manganese dioxide using 2.45 GHz microwave is presented. The so-called γ and γ , β -MnO₂, each containing less than 1 wt% water, which are not attainable by heat treatment, are obtained under specified conditions by this dehydration technique.

In recent years a number of metal oxide cathodes for lithium nonaqueous cells have been investigated.¹⁾ Among them, the manganese dioxide (MnO₂) is one of the most promising cathode materials. The battery-grade electrolytic MnO₂ commercially available, however, originally contains 5 to 10 wt% water. As such water causes serious failures in the lithium-cell system, the development of a dehydration technique has been needed. In order to remove the water, Ikeda et al.²⁾ investigated the heat treatment of electrolytic MnO₂ for lithium-cell use. The continuous heating of electrolytic MnO₂, however, concomitantly caused a structural change in MnO₂.

As has been stated above, the heat treatment of electrolytic MnO_2 is not sufficient for the dehydration of MnO_2 . For this reason, we used a microwave shower in the dehydration of electrolytic MnO_2 for a lithium nonaqueous cell. The objective of this study was to determine whether or not the application of 2.45 GHz microwaves to the dehydration of electrolytic MnO_2 is effective.

Experimental

Electrolytic γ-MnO₂, obtained from the Toyo Soda Manufacturing Corporation, had a particle size of 60—100 mesh and a relatively low equi-acidic point of 2.23 on a pH scale, as determined by Tari's pH-shift method.³⁾

About 100 g of electrolytic MnO₂ in a 200-ml Pyrex beaker (ca. 60 mm $\phi \times 85$ mm) were treated under 2.45 GHz microwave irradiation in a Kenmore microwave oven, model 99701, which had about a 600-W magnetron output and intermittent irradiation controls. In order to determine the effects of a microwave shower on electrolytic MnO2, the weight loss, the X-ray diffractional pattern, and the water contents of the sample before and after the microwave treatment were measured. X-Ray data were obtained by using a Shimadzu X-ray diffractometer, type VD-11, with iron K_{α} radiation filtered with manganese. The water contents of the MnO₂ samples were determined by the following, indirect Karl Fischer titration: about 2 g of the MnO₂ sample, which had been crushed to a fine powder, were heated on a boat in a quartz tube at an elevated temperature under a stream of dry nitrogen carrier gas. The exhaust gas was then introduced into a vessel filled with an anhydrated solvent (Mitsubishi anhydrated solvent ME). Titration was automatically achieved by using a Karl Fischer automatic titration apparatus, model MK-AS (Kyoto Electronics Manufacturing Co., Ltd.). The differential thermal analysis and thermal gravimetry were also carried out by means of a Shimadzu Thermal Analyzer, type DT-30. For the

sake of magnetron safety, a commercially available microwave absorber (60 mm ϕ) was always located in the oven.

Results and Discussion

In the preliminary tests for the dehydration of the electrolytic MnO_2 , we selected the intermittent microwave irradiation which consists of 15 s on and 10 s off. Although the continuous irradiation was also an effective method for the dehydration of electrolytic MnO_2 , hardly no dehydrated γ or γ,β - MnO_2 was thus obtained. It sometimes caused the decomposition of MnO_2 to Mn_2O_3 , which depended on the irradiation time, the microwave power, and the sample weight and/or the apparent volume.

After the preliminary examinations to avoid the decomposition of MnO_2 and to achieve the dehydration, the following conditions were decided on: intermittent microwave irradiation for 5 min, followed by radiation for 25 min; this two-stage treatment was repeated several times.

In order to confirm the effect of microwave irradiation on dehydration, the water content was measured. Figure 1 shows the water distribution of MnO₂ (No. 3 in Fig. 2 and Table 1) well dehydrated by microwave treatment compared with that of the original MnO₂. The water content of the MnO₂ sample shown in Fig. 1 was determined by calculating from the released water at an elevated temperature below 700 °C, assuming that the contained water was zero at 700 °C. The original electrolytic MnO₂ contained 8.3 wt% of water. The rapid decrease in water content below 200 °C was caused by adsorbed water. Because of the decomposition of MnO₂ to Mn₂O₃ up to 500 °C (typically 550 °C), which was confirmed by thermal

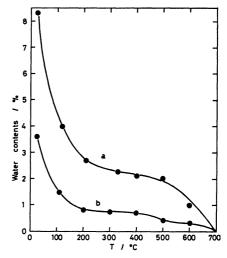


Fig. 1. Water distribution as a function of temperature.
(a) Original electrolytic MnO₂, (b) microwave-treated MnO₂ (No. 3).

TABLE 1.	EFFECT	OF	MICROWAVE	TREATMENT	ON	CRVSTAI	STRUCTURE	AND	MATED	CONTENTS

Sample No.	Microwave treatment	Classification from X-ray data	Water contents ^a /wt% 2.7±0.3		
(Original)		γ -Mn ${ m O_2}$			
1	30 min	γ -MnO ₂ , trace of β -MnO ₂ ?	1.2 <u>+</u> 0.1		
2	$60~\mathrm{min}$	γ -MnO ₂ , trace of β -MnO ₂	0.9 <u>±</u> 0.1		
3	90 min	γ,eta -Mn O_2	0.85 ± 0.1		
4	120 min	γ,eta -Mn ${ m O_2}$	0.6 ± 0.1		

a) Water removed below 200 °C was discarded.

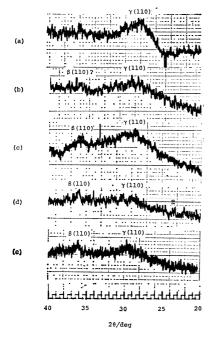


Fig. 2. Change of X-ray diffractional patterns by periodic microwave-treatment which consists of intermittent irradiation (15 s on, 10 s off) for 5 min, and the radiation for 25 min.

(a) Original MnO₂, (b) after 30 min (No. 1), (c) after 60 min (No. 2), (d) after 90 min (No. 3), (e) after 120 min (No. 4).

and X-ray analysis, a water content of less than 1.5 wt% was essentially not attainable by heat treatment.

The structural change caused by microwave treatment were also examined. The original MnO₂ showed the diffractional peaks (2θ) at about 28°, 47°, 54°, and 73°. The peaks at 47°, 54°, and 73° were not

changed by microwave treatment. However, the diffused peak at about 28° was gradually decreased in its intensity, and a new peak at about 36° was observed. These delicate changes are shown in Fig. 2.

The above results are summarized in Table 1. The classification of MnO_2 was done according to the work of Fukuda.⁴⁾ The microwave treatment was concluded to be effective for the dehydration of MnO_2 from the fact that the so-called γ or γ,β - MnO_2 , containing less than 1 wt% water, which could not be attained by heat treatment without the decomposition of MnO_2 , was easily obtained by this treatment. Under these irradiation conditions, the water released below 200 °C was large in amount. Such adsorbed water, however, could be completely excluded by heat treatment at 200 °C, at which temperature the structural change in MnO_2 was proved not to occur.^{2,3)}

Further work related to lithium nonaqueous cells is now in progress in our laboratory.

The present work was supported by Grants-in-Aid for Scientific Research from the Ministry of Education (No. 475619) and the Asahi Garasu Kogyo Gijutsu Shorei-kai.

References

- 1) T. Ohzuku, Z. Takehara, and S. Yoshizawa, *Denki Kagaku*, **46**, 407, 411 (1978).
- 2) H. Ikeda, S. Ueno, T. Saito, S. Nakaido, and H. Tamura, *Denki Kagaku*, 45, 314 391 (1977).
- 3) I. Tari, in "Surface Electrochemistry," ed by T. Takamura and A. Kozawa, Japan Scientific Societies Press (1978), p. 126.
- 4) M. Fukuda, J. Electrochem. Soc. Jpn. (Overseas Ed.), 28, E-38 (1960).